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• Scientific Motivation

• Measurement/Instrument Concepts

• TTSS-FPI (IIP) Results
– Program overview

– Progress-to-date
• Laboratory testing & data analysis

• Summary & Way-Forward
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Science Motivation
• Tropospheric chemistry identified as key measurement  area for future 

NASA Earth science missions ( NASA SMD Strategic Enterprise and 
Science Research Plans)

• Tropospheric ozone (O 3) clearly recognized as one of the most important 
gas phase trace constituents in the troposphere

– key oxidant in tropospheric photochemistry; O3 photolysis is one of the principal sources of the 
hydroxyl radical (OH), the most important radical species associated with the photochemical 
degradation of anthropogenic and biogenic hydrocarbons

– exposure to enhanced levels negatively impacts heal th, crops, and vegetation; O3 is 
responsible for acute and chronic health problems in humans and contributes toward destruction of 
plant and animal populations

– greenhouse gas; contributes toward radiative forcing and climate change
– Levels have been increasing and will continue to do  so as concentrations of precursor gases 

(oxides of nitrogen, methane, and other hydrocarbon s) necessary for the photochemical 
formation of tropospheric O 3 continue to rise;  there is evidence suggesting that average 
surface O3 concentrations may have doubled over the last century

• Space-based detection of tropospheric ozone critical for enhancing 
scientific understanding & lessening impacts of exp osure to elevated 
concentrations

– spatially heterogeneous & high levels are not uniqu e to urban areas; non-uniform 
sources/sinks & transport; enhanced tropospheric O3 observed over the south tropical Atlantic 
Ocean
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Airborne Imaging Fabry-Perot Interferometer System for Tropospheric Trace Species Detection, ESTC 2002, 06/12/02, Larar et al.
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Instrument Incubator Program - IIP
Tropospheric Trace Species Sensing Fabry-Perot Inter ferometer (TTSS-FPI)

PI: Allen Larar / NASA Langley

Description and Objectives

Approach

Partners

Schedule 

Applications/Mission

06/26/06

Advance key technologies and demonstrate an 
integrated system for enabling cost effective remote 
sensing of the troposphere

Instrument uses a spectrally tunable imaging FPI to 
provide high spectral resolution over narrow spectral 
range

Space implementation focus on measurement of 
tropospheric ozone from Geo;  Geo provides high 
temporal/spatial measurement capability

Develop airborne instrument prototype
Perform testing, characterization, and 
demonstration[ground-based radiometric, spatial, spectral within  IIP]

-Validate measurement concept/technologies
-Demonstrate autonomous operation

Process and analyze engineering and science data
Define instrument concept for space-based sensor

CoIs: 
Dr. William Cook, LaRC
Dr. Jeffery Puschell, Raytheon SBRS
Dr. Wilbert Skinner, U of Michigan

Program start – Mar 02
Complete instrument assembly – Jan 06
Complete lab characterization and testing – 15 Mar 06
Complete space sensor concept study – Mar 06
Complete Final Report – Apr 06 
Pursue ground-based & flight demo opportunities – FY06+

Future science objectives include O3, CO, CO2, N2O and other 
tropospheric trace species; environmental monitoring, 
atmospheric chemistry, validation (GOES, ESSP, NPOESS) 

-> cal/val

•-> atm state

•-> cost eff.
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for Measurement Concept
› Three technologies are required for TTSS-FPI within IIP to 

enable the spectrally tunable imaging FPImeasurement 
technique for achieving high-resolution over narrow 
spectral ranges:
1) precision control of etalon plates

a) to demonstrate accurate spectral tuning and parallelism 
control of the LRE and HRE; including piezo-electric 
actuators in a capacitance-based feedback system

2) high-sensitivity two-dimensional infrared detecto r 
array
a) to demonstrate spatial imaging and required SNR; desire 

advanced materials for higher-sensitivity operation at warmer 
temperatures, with goal of reducing active cooling 
requirements, for space-based applications

3) spectral and radiometric calibration
a) to demonstrate spectral registration and absolute intensity 

fidelity in radiance measurements; requires stable & narrow 
spectral emission character sources

Approach

Demonstration

1) & 3): quality spectra
(independent spectral 
elements of proper 
resolution, SRF, and  
magnitude).

2): spatial imaging

Verification

simulation & inter-
comparison with other 
obs.
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Instrument Parameterª Airborne Systemb 
Etalons    
  Diameter ~ 8 cm (6 cm active area) 
   Free Spectral Range (HRE, LRE) 1.52 cm-1 , 5.46 cm-1  
   Scan Range (LRE/HRE) ~ 5 / 15 micron 
NB filter  
   Transmission characteristics 3 – 5 cm-1  FWHM; τ > 50%; ∼ τ > 50%; ∼ τ > 50%; ∼ τ > 50%; ∼ Gaussian shape; 7 – 12 cm-1  FW 5% 
FPA    
   Format 160x160 (~40x40, effective) 
   Pixel Size 60 µm x 60 µm (~240 x 240 eff.) 
   Operating Temperature 35 – 65 K (~40K, nominal) 
   Effective D* ~ 3.0 E12 cm Hz 1/2/W 
Overall System  
   Optical System Peak Transmittance ~0.35 
   Effective System Finesse ~ 20 
   Spectral Resolution 0.068 cm-1 
   Spectral Range ~ 1053.5 – 1056. cm-1 
   f/# ~ 3.0 
   Spatial Resolutionc ~6.3/8.1 m (~25/32 m, eff.), ~1.0/1.3 km across FPA 
   Dwell Time per Spectral element ~0.26 s 
   Dwell Time per Spatial Sample 16 s for spectrum (~ 60 elements) 
   Coverage Time   1.76 km along a/c track in 16 s 
   Platform altitude ~ 16 km 
   Data rate/storaged ~ 2-20 MB/s / 60 GB (8hrs) 
   Instrument size (dewar + rack)           ~35”h, 22”w, 42”d    
 

 ª assumes NESR ~ 0.15 mW m-2 sr-1 cm 
 b nominal parameters desired; actual ones are fcn of obtainable FPA characteristics (i.e., D*, format, pixel size) 

c assumes 3.7 degree IFOV for full FPA at Proteus (15.5 km)/ER-2 (20 km) altitudes 
d worst case range; nominal values TBD per frame averaging; further reduction from pixel binning 
 



Development and Testing of the Tropospheric Trace Species Sensing FPI Prototype, ESTC 2006, 06/28/06, Larar et al.

LaRC
SD / SED 

Active
Vibration
Damping
Device?

Conceptual Airborne System

LRE   HRE
(77 or > 150 K)

Lens FPA
(35-65 K)

Optical Bench
(at or below 170 K; 
nominally 77 K)

Etalon Mount(s)

Scene-
Select 
Mirror

FPA Electronics
Data Acquisition &
Control Electronics

LHe & N 2

DewarAnti-Vibration
Interface

Aircraft/Pod Frame

Laser?

Laser
Detector

Heaters ???Heaters ???
Capacitors

Pump Port

Window

S
tepper M

otor

Vacuum Enclosure
(removes convective 
coupling between 
bench & hot walls)

Ambient Environment
@ ~ 60,000 ft: nominal air temp ≈≈≈≈ 217 K

Dry Nitrogen 
Purge

Thermal isolation of optical bench (ensures minimal
conductive/radiative coupling between bench/walls)

1 W dissipation

Insulated Wall

Uncooled/Sealed
Enclosure

ABB HBB

CO2 Cell

(~310 K)(~175 K)

Blackbody sources

Low emittance
surface

(~4/77 K)

**Shows 
subsystems 
considered in 
design & 
development 
process**

Nadir 
scene

HBB
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• Subsystem- and psuedo-system-level (i.e. w/ HRE in dewar) testing has 
demonstrated several project enabling technologies

– Etalon control & spectral fidelity at room/cryo temperatures

– Encouraging radiometric calibration w/FPA </= 77K

– Imaging fidelity @ nominal system cryogenic temperatures

– Imaging FPI in dewar cryogenic environment

• Accomplished system-level testing in dewar prior to closure of IIP task 
(15 March 2006)

– ILS characterization using CO2 laser with HRE in dewar etalon assembly

– w/o optimum cryogenic alignment / FPA illumination

• Initial alignment & FPA illumination issues have been resolved
– cryogenically-induced alignment displacements are removed with new optical 

adjustment motors providing sufficient torque in dewar

– Integrating sphere or beam diverging pre-optics provide extended source input
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• Parallel lab testbed mitigates risk and 
ensures continued technical advancement
– It's a slow, difficult process doing many of these 

tasks for the first time in a cryogenic 
environment  

– Bench level characterization testing continues, in 
parallel to dewar operations, with an independent 
measurement system  (high-resolution laboratory 
FTIR, along with laser, BB, and solar sources)    

• Targeting data from both systems 
ensures continued technical advancement
– Dewar: ILS characterization across SCA, and to 

characterize etalon tuning & control in cryogenic 
environment 

– Bench: ambient characterization of etalon SRF, 
etalon tuning & control (HRE,  LRE, & both in 
series)
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Radiometric Calibration Testing 
(Mar 2005)

BB T vs measured counts 
(avg over FPA)

25,600 cal. eqns.

(counts) (deg C)

σ/µσ/µσ/µσ/µ ∼ ∼ ∼ ∼ 15 %
σ/µσ/µσ/µσ/µ ∼ ∼ ∼ ∼ 0.5 %

• Derived calibration equations for each pixel
– LSQ fit to BB temperature vs measured counts 

relationships for each of the 25,600 pixels
• Applied calibration equations to measurements of 

40 C BB

FPA @ 77K
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look Imaging Test Data (091405)

Centroid = (77,74) 
FWHM = (21.2,21.3) 
Rot (CW, deg) = -14.4

Centroid = (126,76) 
FWHM = (23.5,23.6) 
Rot (CW, deg) = -18.0

Centroid = (107,76) 
FWHM = (23.4,23.4) 
Rot (CW, deg) = -18.0

measured

Simulated   
(@ min  RSS)

“truth” = 23.48 pixels

Mean all obs= 23.18 (-1.3%)

Mean of “good” tests= 23.475 (-0.02%); 
stdev = +/- 0.41%
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C:\fpa_data\test2\hallway\ice2_avg.img
Left BB: pos (c,r), dia-fwhm (pix), dia-fwhm (inches) =           

30          70 20.8000      5.20000
Right BB: pos (c,r), dia-fwhm (pix), dia-fwhm (inches) =          

130        68      18.2000      4.55000
BB horizontal distance (pixels / inches) =          

100 /       25.0000
BB center-to-center distance (pixels / inches) =       

100.020 /       25.0050

C:\fpa_data\test2\hallway\ice_R_avg.img
Left BB: pos (c,r), dia-fwhm (pix), dia-fwhm (inches) =           
33          70    22.5000      5.62500
Right BB: pos (c,r), dia-fwhm (pix), dia-fwhm (inches) =          
132    69      22.5000     5.62500
BB horizontal distance (pixels / inches) =          
99 /       24.7500
BB center-to-center distance (pixels / inches) =       
99.0051 /       24.7513

C:\fpa_data\test2\hallway\RonBB_avg.img
Left BB: pos (c,r), dia-fwhm (pix), dia-fwhm (inches) =           
29          71      19.7000      4.92500
Right BB: pos (c,r), dia-fwhm (pix), dia-fwhm (inches) =          
130          68      18.2000     4.55000
BB horizontal distance (pixels / inches) =          
101 /       25.2500
BB center-to-center distance (pixels / inches) =       
101.045 /       25.2611

“truth” = 25.5 inches

Mean all obs= 24.84  (-2.6%)

Mean of “good” tests= 25.0 
(-1.96%); stdev = +/- 0.98%
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HRE / FTIR bench 
measurements
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with BB/FTIR: LRE example 

etalon

FTIR

blackbody

Post-test analysis infers 
etalon properties to best fit 
measured test data
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Capacitance Repeatability Test (03/3-6/06)
State-1: State-2: Repeat-1 (voltage): Repeat-2 (capaci tance):

Poorly-
aligned 
State-2

hysteresis
@ voltage 
repeat

ILS position & 
finesse match 
@ capacitance 
repeat
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source (031506)

Original data (max 
signal = min counts)

Intense laser signal 
transmitted through 
FPI bandpass wings, 
saturating local pixels

Non-AR-coated dewar
window ŁŁŁŁ ghost 
images
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Deviation from centered, 
full-circular ring pattern 
caused from:

Partially-illuminated FPA 
ŁŁŁŁ observation of only 
portion of fringe 

Mis-aligned etalon plates 
& parasitic energy 
reflections ŁŁŁŁ deviation 
from circular & offsets
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Ne = FSR / FWHM ~ (47.56-
13.64)/(18.68-13.48) = 6.52~ Ne

Effective Finesse Approximation from 
Cryogenic PZT Scan Test (031506)

Ambient lab values have ranged from ~ 
6-14, as fcn of etalon alignment
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estimation (031506)

Distance moved / FSR ~ (36.92-
15.11)/(58.92-15.11) =

0.497832

difference image: smooth(FPA1,3)- smooth(FPA5,3)

~½ PZT range expected at cryogenic 
operation vs lab for same ∆V

5000 counts in labŁ ~ 1 FSR range    

dewar test changed same amount of volts 
and got the expected ~ ½ FSR motion

-1.18
-1.35
-1.96
-2.16

Slopes of spectral scan 
distance / PZT change 
(FSR / 5000 counts)

FTIR PZT scan data

Initial locations 
of sequential 
fringes

Final locations 
of sequential 
fringes

A

A

FSR

distance 
moved
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condition for maximum in 
interference pattern

∆d= λ/(2µ cosθ) ~λ/2 

~ 0.5 ∆d observed in dewar data

Ł 2.4 micron movement (15 V ∆PZT)

100 V PZT range Ł 6.67*2.4 micron 
~ 16 micron full-range estimated

∆∆∆∆V/∆∆∆∆PZT is known to be nonlinear

ŁŁŁŁ ballpark cryogenic PZT motion from
observed PZT-scan-induced spectral fringes

[λlaser= 9.473 µ (1055.63 cm-1)]

43 micron observed @ ambient

~ 21.5 micron expected in dewar

~ 75% achieved (from linear extrapolation)

Fringe at specific FPA location 
whenever gap changes by

Ł ∆d = 4.7365 micron
Change in PZT gap needed to change 
fringe order at specific FPA pixel 



Development and Testing of the Tropospheric Trace Species Sensing FPI Prototype, ESTC 2006, 06/28/06, Larar et al.

LaRC
SD / SED Spectral Fringe “Proof”

• Moving fringe pattern observed with ∆PZT 
while viewing monochromatic source

• Upon changing CO2 laser lines, spatial-
positioning of fringe pattern changed on FPA

• Etalon & PZT characteristics derived from 
HRE/dewar-induced fringes comparable to 
those derived in bench-level ambient testing
– Ne

– PZT scan response

• Demonstrates existence of imaging FPI!
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• PZTs worked in dewar on 15 March, but motors not 
operable (insufficient torque & lubricants not functional at 
cryogenic temps; no ability to align) and did not have any 
measure of capacitance (i.e. no proof of repeatability in 
dewar). Also, FPA was only partially illuminated. 
– [Aside: PZT stacks designed to provide needed spectral scan 

displacement, but not extra for initial alignment; i.e., ~ 45 micron 
motion @ room temperature, and ~ 1/2 distance @ 77K in dewar]

• Purchased non-cryogenic-rated motors with required 
torque and converted to enable cryogenic operation 
– removed all bearing seals & lubricants and degreased all parts using 

ultrasonic cleaning.  Qualified motors by submerging in liquid nitrogen 
bath.  Cryogenic performance demonstrated within dewar

• Cryogenic capacitance monitoring enabled by altering 
capacitor spacings to match dynamic range of PZT motion

• Full-FPA illumination achieved using integrating sphere or 
diverging lens in pre-optics
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monochromatic source (22 May)

• used integrating sphere for “extended source” 

• warm (77 K) operation resulted in weak target 
signal relative to other parasitic components, but  
did show complete spectral fringes in dewar!  
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Etalon properties from neighboring 
fringes: higher signal test (7 June)

Neighboring 
fringes

ŁŁŁŁ fsr ~ 1.28 cm-1 & Ne ~ 8.2 

strong line

Radially smoothed   
(strong line)

Radial x-section 
for pos-10

Radial x-section 
for pos-8

• w/o integrating sphere; lens 
used to diverge beam and 
illuminate entire FPA

• Shows:
– multiple superimposed fringe 

patterns (spectral & spatial)
– optical mis-alignment
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select *same* capacitance positions (7 June)

Weak line 
position

Strong line 
position

Yields 0.83 cm-1 difference;
should be wavelength diff +/- n*fsr

9.473micron - 9.504 micron = 3.4432 cm-1

0.83 cm -1 + n*1.28 = 3.39, n = 2 (~ 1.5% error)

Strong line – weak line
Radially smoothed 
(Strong line – weak line)

[Viewing 2 lines enables etalon spectral property d etermination from single image]
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repeatable (9 June)

Radial x-section 
for pos-1

strong line radially smoothed   (strong line)

Neighboring 
fringes

ŁŁŁŁ fsr ~ 1.28 cm-1 & Ne ~ 8.2 

Similar characteristics as observed during 7 June testing
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before/after centering (9 June)

Primary 
fringes

neighboring 
fringe

Finesse (Ne) 
improvement 
from better 
alignment

[Centering performed using alignment adjustment mot ors]
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Difference images of two laser lines observed at 
select *same* capacitance positions (9 June): 

centered fringe pattern

Pos-2:  fsr = (3.4432 + 0.44)/3 = 1.294 cm-1

Pos-6:  fsr=(3.4432 + 0.37)/3 = 1.271 cm-1

AVG= 1.283 cm-1  (0.23% > “truth”)

Strong line – weak line

Radially smoothed (Strong line – weak line)

3.4432=n*fsr + / - dv ŁŁŁŁ FSR = 
(3.4432 +/- dv)/n, n=1,2,3,…

Strong line 
position

weak line 
position

weak line 
position

Strong line 
position
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evolution

15 March 22 May 7 June 9 June

16 June

Radially-smoothed 
image frames
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Status

• Spatial imaging
– Spatial imaging fidelity has been demonstrated in the cryogenic dewar

environment by FPA-inferred spatial sizes matching known-target dimensions 
(sun-look & hallway tests)

• Radiometric calibration
– Radiometric calibration methodology fidelity has been demonstrated in the 

cryogenic dewar environment by using cold, thermally-stable FPA 
measurements of known target temperatures to show radiometric calibration 
transforms measurements to expected scene temperatures with greatly reduced 
pixel-variance over uniform scenes.  (Calibration-target & hallway tests)

• Spectral tuning
– Spectral tuning fidelity has been demonstrated in the ambient lab and cryogenic 

dewar environments by being able to precisely repeat desired spectral
characteristics via etalon gap control (sun-look, capacitance repeatability, PZT 
& motor scan tests)   
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• Technical advancement
– autonomous tuning & control

• Capacitance feedback  system
– Image quality & radiometric crosstalk 

• stray light reduction
– AR-coated dewar window
– Additional baffling/optical elements or tilting to minimize impact of 

undesired reflections-induced spatial/spectral parasitic energy

– Implement double-etalon SRF 
• Insert LRE in etalon assembly

• Demonstrations 
– Lab testing/characterization (including atm/solar views)
– Consider field deployment(s), aircraft implementation

• Program infusion
– ESSP (SMD)
– External applications (DOD,  IC, etc.)
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§ Tropospheric ozone is a HIGH-PRIORITY measurement in the NASA 
SMD Strategic Enterprise and Science Research Plans

§ TTSS-FPI concept enables new multispectral imaging measurement 
capability for space-based observation of tropospheric ozone

§ Exploits spatial and temporal benefitsof GEO-imaging (e.g. monitoring 
of regional pollution episodes)

§ Instrument concept and technologiesalso have broad-based 
applicability to measurement of other geophysical parameters (passive 
& active) 

§ Hybrid instrument implementations (e.g. FPI + FTS) cangreatly 
simplify sensor designswhere high spectral resolution is needed in only 
select spectral regions

§ Instrument system (TTSS-FPI) development within NASA’s IIP has 
demonstrated an advanced atmospheric remote sensor concept & 
technologiesintended for geostationary-based measurement of 
tropospheric O3
§ Imaging cryogenic FPI has been demonstrated
• Very encouraging Radiometric, spatial, and spectral performance has been 

characterized




